Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.474
Filtrar
1.
Mol Genet Genomic Med ; 12(4): e2424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546112

RESUMO

BACKGROUND: The ASNS (ASNS, MIM 108370) gene variations are responsible for asparagine synthetase deficiency (ASNSD, MIM 615574), a very rare autosomal recessive disease characterized by cerebral anomalies. These patients have congenital microcephaly, progressive encephalopathy, severe intellectual disability, and intractable seizures. METHOD: Clinical characteristics of the patient were collected. Exome sequencing was used for the identification of variants. Sanger sequencing was used to confirm the variant in the target region. The structure of the protein was checked using the DynaMut2 web server. RESULTS: The proband is an 11-year-old Iranian-Azeri girl with primary microcephaly and severe intellectual disability in a family with a consanguineous marriage. Symptoms emerged around the 10-20th days of life, when refractory epileptic gaze and unilateral tonic-clonic seizures initiated without any provoking factor such as fever. A brain MRI revealed no abnormalities except for brain atrophy. The karyotype was normal. Using exome sequencing, we identified a novel homozygous variant of thymine to adenine (NM_001673.5:c.538T>A) in the ASNS gene. Both parents had a heterozygous variant in this location. Subsequently, Sanger sequencing confirmed this variant. We also reviewed the clinical manifestations and MRI findings of the previously reported patients. CONCLUSION: In the present study, a novel homozygous variant was recognized in the ASNS gene in an Iranian-Azeri girl manifesting typical ASNSD symptoms, particularly intellectual disability and microcephaly. This study expands the mutation spectrum of ASNSD and reviews previously reported patients.


Assuntos
Encefalopatias , Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Feminino , Humanos , Criança , Microcefalia/genética , Microcefalia/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Irã (Geográfico) , Encefalopatias/genética , Atrofia
2.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
3.
Neuromolecular Med ; 26(1): 7, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546891

RESUMO

Noncoding DNA undergoes widespread context-dependent transcription to produce noncoding RNAs. In recent decades, tremendous advances in genomics and transcriptomics have revealed important regulatory roles for noncoding DNA elements and the RNAs that they produce. Enhancers are one such element that are well-established drivers of gene expression changes in response to a variety of factors such as external stimuli, cellular responses, developmental cues, and disease states. They are known to act at long distances, interact with multiple target gene loci simultaneously, synergize with other enhancers, and associate with dynamic chromatin architectures to form a complex regulatory network. Recent advances in enhancer biology have revealed that upon activation, enhancers transcribe long noncoding RNAs, known as enhancer RNAs (eRNAs), that have been shown to play important roles in enhancer-mediated gene regulation and chromatin-modifying activities. In the brain, enhancer dysregulation and eRNA transcription has been reported in numerous disorders from acute injuries to chronic neurodegeneration. Because this is an emerging area, a comprehensive understanding of eRNA function has not yet been achieved in brain disorders; however, the findings to date have illuminated a role for eRNAs in activity-driven gene expression and phenotypic outcomes. In this review, we highlight the breadth of the current literature on eRNA biology in brain health and disease and discuss the challenges as well as focus areas and strategies for future in-depth research on eRNAs in brain health and disease.


Assuntos
Encefalopatias , RNA Longo não Codificante , Humanos , 60425 , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Cromatina/genética , RNA Longo não Codificante/genética , Encefalopatias/genética , DNA , Transcrição Gênica
4.
Proc Natl Acad Sci U S A ; 121(12): e2315707121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489388

RESUMO

KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.


Assuntos
Encefalopatias , Transtornos do Neurodesenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Proteínas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encefalopatias/genética , Neurogênese/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
5.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360746

RESUMO

An increasing number of pathogenic variants in presynaptic proteins involved in the synaptic vesicle cycle are being discovered in neurodevelopmental disorders. The clinical features of these synaptic vesicle cycle disorders are diverse, but the most prevalent phenotypes include intellectual disability, epilepsy, movement disorders, cerebral visual impairment, and psychiatric symptoms ( Verhage and Sørensen, 2020; Bonnycastle et al., 2021; John et al., 2021; Melland et al., 2021). Among this growing list of synaptic vesicle cycle disorders, the most frequent is STXBP1 encephalopathy caused by de novo heterozygous pathogenic variants in syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1; Verhage and Sørensen, 2020; John et al., 2021). STXBP1 is an essential protein for presynaptic neurotransmitter release. Its haploinsufficiency is the main disease mechanism and impairs both excitatory and inhibitory neurotransmitter release. However, the disease pathogenesis and cellular origins of the broad spectrum of neurological phenotypes are poorly understood. Here we generate cell type-specific Stxbp1 haploinsufficient male and female mice and show that Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons causes developmental delay, epilepsy, and motor, cognitive, and psychiatric deficits, recapitulating majority of the phenotypes observed in the constitutive Stxbp1 haploinsufficient mice and STXBP1 encephalopathy. In contrast, Stxbp1 haploinsufficiency in glutamatergic neurons results in a small subset of cognitive and seizure phenotypes distinct from those caused by Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons. Thus, the contrasting roles of excitatory and inhibitory signaling reveal GABAergic/glycinergic dysfunction as a key disease mechanism of STXBP1 encephalopathy and suggest the possibility to selectively modulate disease phenotypes by targeting specific neurotransmitter systems.


Assuntos
Encefalopatias , Epilepsia , Transtornos do Neurodesenvolvimento , Animais , Feminino , Masculino , Camundongos , Encefalopatias/genética , Epilepsia/genética , Neurônios GABAérgicos/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurotransmissores
6.
Eur J Med Genet ; 68: 104918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325642

RESUMO

Increasingly, next-generation sequencing (NGS) is becoming an invaluable tool in the diagnosis of unexplained acute neurological disorders, such as acute encephalopathy/encephalitis. Here, we describe a brief series of pediatric patients who presented at the pediatric intensive care unit with severe acute encephalopathy, initially suspected as infectious or inflammatory but subsequently diagnosed with a monogenic disorder. Rapid exome sequencing was performed during the initial hospitalization of three unrelated patients, and results were delivered within 7-21 days. All patients were previously healthy, 1.5-3 years old, of Muslim Arab descent, with consanguineous parents. One patient presenting with acute necrotizing encephalopathy (ANEC). Her sister presented with ANEC one year prior. Exome sequencing was diagnostic in all three patients. All were homozygous for pathogenic and likely-pathogenic variants associated with recessive disorders; MOCS2, NDUFS8 and DBR1. Surprisingly, the initial workup was not suggestive of the final diagnosis. This case series demonstrates that the use of rapid exome sequencing is shifting the paradigm of diagnostics even in critical care situations and should be considered early on in children with acute encephalopathy. A timely diagnosis can direct initial treatment as well as inform decisions regarding long-term care.


Assuntos
Encefalopatias , Doenças do Sistema Nervoso , Feminino , Humanos , Criança , Lactente , Pré-Escolar , Sequenciamento do Exoma , Exoma/genética , Homozigoto , Encefalopatias/diagnóstico , Encefalopatias/genética
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320662

RESUMO

Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.


Assuntos
Encefalopatias , Encefalomiopatias Mitocondriais , Mitofagia , Humanos , Mitofagia/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Encefalopatias/genética , Encefalopatias/metabolismo , RNA de Transferência/genética , RNA Mitocondrial/metabolismo
8.
Am J Med Genet A ; 194(5): e63529, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38179855

RESUMO

Nucleoporins (NUPs) are a group of transporter proteins that maintain homeostasis of nucleocytoplasmic transport of proteins and ribonucleic acids under physiological conditions. Biallelic pathogenic variants in NUP214 are known to cause susceptibility to acute infection-induced encephalopathy-9 (IIAE9, MIM#618426), which is characterized by severe and early-onset febrile encephalopathy causing neuroregression, developmental delay, microcephaly, epilepsy, ataxia, brain atrophy, and early death. NUP214-related IIAE9 has been reported in eight individuals from four distinct families till date. We identified a novel in-frame deletion, c.202_204del p.(Leu68del), in NUP214 by exome sequencing in a 20-year-old male with episodic ataxia, seizures, and encephalopathy, precipitated by febrile illness. Neuroimaging revealed progressive cerebellar atrophy. In silico predictions show a change in the protein conformation that may alter the downstream protein interactions with the NUP214 N-terminal region, probably impacting the mRNA export. We report this novel deletion in NUP214 as a cause for a late onset and less severe form of IIAE9.


Assuntos
Encefalopatia Aguda Febril , Encefalopatias , Epilepsia , Microcefalia , Masculino , Humanos , Adulto Jovem , Adulto , Encefalopatias/diagnóstico , Encefalopatias/genética , Epilepsia/genética , Microcefalia/genética , Atrofia , Complexo de Proteínas Formadoras de Poros Nucleares/genética
9.
Nucleic Acid Ther ; 34(2): 90-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215303

RESUMO

RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous GNAO1 c.607 G > A variant causing GNAO1 encephalopathy. By screening short interfering RNA (siRNA), we showed that GNAO1 c.607G>A is a druggable target for RNAi. The si1488 candidate achieved at least twofold allelic discrimination and downregulated mutant protein to 35%. We created vectorized RNAi by incorporating the si1488 sequence into the short hairpin RNA (shRNA) in the adeno-associated virus (AAV) vector. The shRNA stem and loop were modified to improve the transcription, processing, and guide strand selection. All tested shRNA constructs demonstrated selectivity toward mutant GNAO1, while tweaking hairpin structure only marginally affected the silencing efficiency. The selectivity of shRNA-mediated silencing was confirmed in the context of AAV vector transduction. To conclude, RNAi effectors ranging from siRNA to AAV-RNAi achieve suppression of the pathogenic GNAO1 c.607G>A and discriminate alleles by the single-nucleotide substitution. For gene therapy development, it is crucial to demonstrate the benefit of these RNAi effectors in patient-specific neurons and animal models of the GNAO1 encephalopathy.


Assuntos
Encefalopatias , Terapia Genética , Animais , Humanos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Alelos , Encefalopatias/genética , Vetores Genéticos/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética
10.
Seizure ; 115: 20-27, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183824

RESUMO

PURPOSE: Drug-resistant epilepsy is seen in patients with inborn errors of metabolism and metabolic dysfunction in neurons is crucial to brain disorders associated with psychomotor impairment. Diagnostic rates of metabolic causes of developmental and epileptic encephalopathy (DEE) using next generation sequencing have been rarely studied in literature. METHODS: A prospective hospital study was carried out in 384 children with DEE, who underwent genetic testing. Metabolic disorders were evaluated with biochemical blood/urine assays and when required CSF estimations performed. RESULTS: A total of 154 pathogenic/likely pathogenic variants in 384 children were identified. Out of 384 children, 89 were clinically suspected to have probable or possible metabolic disorders. Pathogenic/likely pathogenic variants in metabolic genes were identified in 39 out of 89 (43.8 %) and promising VUS in 28 (31.4 %). These included variants for progressive myoclonus epilepsies (21; 53.8 %), DEE with focal/multifocal seizures (8; 20.5 %), generalized epilepsy (5;12.8 %), early myoclonic encephalopathy (2; 5.1 %), LGS (1; 2.6 %) and West syndrome (2; 5.1 %). CONCLUSION: Our cohort demonstrates for the first time from the Indian subcontinent that identification of metabolic variants can guide investigations and has therapeutic implications in patients with variable DEE phenotypes. A high utility is noted with regard to diagnosis and prognostication, given the low yield of available biochemical tests, indicating cost-effectiveness of this approach.


Assuntos
Encefalopatias , Doenças Metabólicas , Espasmos Infantis , Criança , Humanos , Estudos Prospectivos , Espasmos Infantis/diagnóstico , Convulsões/complicações , Encefalopatias/genética , Doenças Metabólicas/complicações
11.
Mol Genet Genomic Med ; 12(1): e2354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284441

RESUMO

BACKGROUND: The genetic background of neonatal encephalopathy (NE) is complicated and early diagnosis is beneficial to optimizing therapeutic strategy for patients. METHODS: NE Patients with unclear etiology received regular clinical tests including ammonia test, metabolic screening test, amplitude-integrated electroencephalographic (aEEG) monitoring, brain Magnetic Resonance Imaging (MRI) scanning, and genetic test. The protein structure change was predicted using Dynamut2 and RoseTTAFold. RESULTS: 15 out of a total of 113 NE Patients were detected with newly reported pathogenic variants. In this sub-cohort, (1) seizure was the primary initial symptoms; (2) four patients had abnormal metabolic screening results, and two of them were also diagnosed with excessive blood ammonia concentration; (3) the brain MRI results were irregular in three infants and the brain waves were of moderate-severe abnormality in about a half of the patients. The novel pathogenic variants discovered in this study belonged to 12 genes, and seven of them were predicted to introduce a premature translation termination. In-silicon predictions showed that four variants were destructive to the protein structure of KCNQ2. CONCLUSION: Our study expands the mutation spectrum of genes associated with NE and introduces new evidence for molecular diagnosis in this newborn illness.


Assuntos
Amônia , Encefalopatias , Recém-Nascido , Lactente , Humanos , Encefalopatias/genética , Encefalopatias/diagnóstico , Convulsões/diagnóstico , Encéfalo , Eletroencefalografia/efeitos adversos , Eletroencefalografia/métodos
12.
Trends Neurosci ; 47(1): 18-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968206

RESUMO

Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.


Assuntos
Encefalopatias , Caracteres Sexuais , Humanos , Masculino , Feminino , Encéfalo/fisiologia , Epigênese Genética , Encefalopatias/genética , Diferenciação Sexual/genética
13.
Gene ; 894: 147985, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956963

RESUMO

BACKGROUND AND AIMS: Biallelic variants in mitochondrial prolyl-tRNA synthetase 2 (PARS2) are associated with developmental and epileptic encephalopathy-75 (DEE75), which is characterized by global developmental delay, seizures and brain imaging anomalies. To date, fewer than 20 patients with PARS2 mutation have been reported in previous literature, and only ten of them had detailed phenotype information. MATERIALS AND METHODS: In our study, we performed whole exome sequencing for three intellectual disability patients from one family. RESULTS: Two novel missense PARS2 variants, c.467C>G (p. Pro156Arg) and c.1183G>C (p. Asp395His), were identified. All of our patients displayed profound intellectual disability and absent speech, while other features, including seizures, cardiomyopathy, short stature and brain MRI, varied greatly in this family. This is also the first report of ovarian dysfunction in association with PARS2 mutations. CONCLUSIONS: We reported three patients with the longest lifespan in reported cases so far, and our results provided an opportunity to study DEE75 prognosis and symptoms in adulthood. Our results further extended the clinical and genetic spectra of PARS2 gene mutation.


Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Deficiência Intelectual/genética , Mutação , Fenótipo , Convulsões/genética
14.
Brain ; 147(1): 91-99, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804319

RESUMO

Pathogenic variants in the MFN2 gene are commonly associated with autosomal dominant (CMT2A2A) or recessive (CMT2A2B) Charcot-Marie-Tooth disease, with possible involvement of the CNS. Here, we present a case of severe antenatal encephalopathy with lissencephaly, polymicrogyria and cerebellar atrophy. Whole genome analysis revealed a homozygous deletion c.1717-274_1734 del (NM_014874.4) in the MFN2 gene, leading to exon 16 skipping and in-frame loss of 50 amino acids (p.Gln574_Val624del), removing the proline-rich domain and the transmembrane domain 1 (TM1). MFN2 is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial fusion, shaping large mitochondrial networks within cells. In silico modelling showed that the loss of the TM1 domain resulted in a drastically altered topological insertion of the protein in the mitochondrial outer membrane. Fetus fibroblasts, investigated by fluorescent cell imaging, electron microscopy and time-lapse recording, showed a sharp alteration of the mitochondrial network, with clumped mitochondria and clusters of tethered mitochondria unable to fuse. Multiple deficiencies of respiratory chain complexes with severe impairment of complex I were also evidenced in patient fibroblasts, without involvement of mitochondrial DNA instability. This is the first reported case of a severe developmental defect due to MFN2 deficiency with clumped mitochondria.


Assuntos
Encefalopatias , Doença de Charcot-Marie-Tooth , Gravidez , Humanos , Feminino , Homozigoto , Mutação/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Deleção de Sequência , Mitocôndrias/metabolismo , Encefalopatias/genética , Doença de Charcot-Marie-Tooth/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
15.
Eur J Med Genet ; 67: 104893, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070825

RESUMO

Developmental and epileptic encephalopathies (DEEs) refer to a group of severe epileptic syndromes characterized by seizures as well as a developmental delay which can be a consequence of the underlying etiology and/or the epileptic encephalopathy. The genes responsible for DEEs are numerous and their number is increasing since the availability of Next-Generation Sequencing. Pathogenic variants in GRM7, encoding the metabotropic glutamate receptor 7, were recently shown as a cause of a severe DEE with autosomal recessive inheritance. To date, only ten patients have been reported in the literature, generally with severe phenotypes including early-onset epilepsy, microcephaly, brain anomalies, and spasticity. We report here 5 patients from 3 independent families with biallelic variants in the GRM7 gene. We review the literature and provide further elements for the understanding of the genotype-phenotype correlation of this rare syndrome.


Assuntos
Encefalopatias , Epilepsia , Transtornos do Neurodesenvolvimento , Receptores de Glutamato Metabotrópico , Humanos , Epilepsia/genética , Encefalopatias/genética , Convulsões , Transtornos do Neurodesenvolvimento/genética , Fenótipo
16.
Neurol Neurochir Pol ; 58(1): 94-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38156729

RESUMO

INTRODUCTION: Primary familial brain calcification (PFBC) is a neurodegenerative disease characterised by bilateral calcification in the brain, especially in the basal ganglia, leading to neurological and neuropsychiatric manifestations. White matter hyperintensities (WMH) have been described in patients with PFBC and pathogenic variants in the gene for platelet-derived growth factor beta polypeptide (PDGFB), suggesting a manifest cerebrovascular process. We present below the cases of two PFBC families with PDGFB variants and stroke or transient ischaemic attack (TIA) episodes. We examine the possible correlation between PFBC and vascular events as stroke/TIA, and evaluate whether signs for vascular disease in this condition are systemic or limited to the cerebral vessels. MATERIAL AND METHODS: Two Swedish families with novel truncating PDGFB variants, p.Gln140* and p.Arg191*, are described clinically and radiologically. Subcutaneous capillary vessels in affected and unaffected family members were examined by light and electron microscopy. RESULTS: All mutation carriers showed WMH and bilateral brain calcifications. The clinical presentations differed, with movement disorder symptoms dominating in family A, and psychiatric symptoms in family B. However, affected members of both families had stroke, TIA, and/or asymptomatic intracerebral ischaemic lesions. Only one of the patients had classical vascular risk factors. Skin microvasculature was normal. CONCLUSIONS: Patients with these PDGFB variants develop microvascular changes in the brain, but not the skin. PDGFB-related small vessel disease can manifest radiologically as cerebral haemorrhage or ischaemia, and may explain TIA or stroke in patients without other vascular risk factors.


Assuntos
Encefalopatias , Calcinose , Ataque Isquêmico Transitório , Doenças Neurodegenerativas , Acidente Vascular Cerebral , Humanos , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Encefalopatias/genética , Encefalopatias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Ataque Isquêmico Transitório/diagnóstico por imagem , Ataque Isquêmico Transitório/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calcinose/diagnóstico por imagem , Calcinose/genética , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Mutação
17.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135915

RESUMO

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Hipotonia Muscular , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/complicações , Encefalopatias/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Eletroencefalografia/métodos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína 4 Homóloga a Disks-Large/genética
18.
Pediatr Neurol ; 151: 68-72, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113697

RESUMO

BACKGROUND: Early infantile epileptic encephalopathy 25 (EIEE25) is a distinct type of neonatal epileptic encephalopathy caused by autosomal recessive mutations in the SLC13A5 gene. SLC13A5 encodes a transmembrane sodium/citrate cotransporter required for regulating citrate entry into cells. METHODS: Four families with recessively inherited epileptic encephalopathy were sequenced by clinically accredited laboratories using commercially available epilepsy gene panels. Patients were examined by a neurologist and were clinically diagnosed with infantile epileptic encephalopathy. RESULTS: We present four families with global developmental delay, intellectual disability, and defective tooth development with four novel homozygous mutations in SLC13A5. The neurological examination showed spastic quadriplegia with increased deep tendon reflexes. Brain magnetic resonance imaging showed nonspecific signal abnormality of the bilateral hemispheric white matter. Despite similar clinical features, the conditions were based on different molecular mechanisms acting on SLC13A5 (abnormal splicing, large-scale deletions, and tandem-residue insertion). CONCLUSIONS: Our results extend the landscape of autosomal recessive inherited homozygous mutations in SLC13A5 that cause a distinctive syndrome of severe neonatal epileptic encephalopathy. Our observations confirm the homogeneity of epileptic encephalopathy and dental abnormalities as a distinct clinical marker for EIEE25 despite the heterogeneous functional and mutational background.


Assuntos
Encefalopatias , Epilepsia , Espasmos Infantis , Simportadores , Recém-Nascido , Humanos , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/genética , Espasmos Infantis/patologia , Epilepsia/genética , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Mutação/genética , Síndrome , Ácido Cítrico , Simportadores/genética
19.
Am J Hum Genet ; 111(1): 48-69, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118447

RESUMO

Brain imaging and genomics are critical tools enabling characterization of the genetic basis of brain disorders. However, imaging large cohorts is expensive and may be unavailable for legacy datasets used for genome-wide association studies (GWASs). Using an integrated feature selection/aggregation model, we developed an image-mediated association study (IMAS), which utilizes borrowed imaging/genomics data to conduct association mapping in legacy GWAS cohorts. By leveraging the UK Biobank image-derived phenotypes (IDPs), the IMAS discovered genetic bases underlying four neuropsychiatric disorders and verified them by analyzing annotations, pathways, and expression quantitative trait loci (eQTLs). A cerebellar-mediated mechanism was identified to be common to the four disorders. Simulations show that, if the goal is identifying genetic risk, our IMAS is more powerful than a hypothetical protocol in which the imaging results were available in the GWAS dataset. This implies the feasibility of reanalyzing legacy GWAS datasets without conducting additional imaging, yielding cost savings for integrated analysis of genetics and imaging.


Assuntos
Encefalopatias , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Fenótipo , Encefalopatias/genética , Polimorfismo de Nucleotídeo Único/genética
20.
Nat Commun ; 14(1): 8059, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052789

RESUMO

Loss- and gain-of-function variants in the gene encoding KCNQ2 channels are a common cause of developmental and epileptic encephalopathy, a condition characterized by seizures, developmental delays, breathing problems, and early mortality. To understand how KCNQ2 dysfunction impacts behavior in a mouse model, we focus on the control of breathing by neurons expressing the transcription factor Phox2b which includes respiratory neurons in the ventral parafacial region. We find Phox2b-expressing ventral parafacial neurons express Kcnq2 in the absence of other Kcnq isoforms, thus clarifying why disruption of Kcnq2 but not other channel isoforms results in breathing problems. We also find that Kcnq2 deletion or expression of a recurrent gain-of-function variant R201C in Phox2b-expressing neurons increases baseline breathing or decreases the central chemoreflex, respectively, in mice during the light/inactive state. These results uncover mechanisms underlying breathing abnormalities in KCNQ2 encephalopathy and highlight an unappreciated vulnerability of Phox2b-expressing ventral parafacial neurons to KCNQ2 pathogenic variants.


Assuntos
Encefalopatias , Transtornos Respiratórios , Animais , Camundongos , Encefalopatias/genética , Mutação com Ganho de Função , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Transtornos Respiratórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...